

### NGGPS

### Software Architecture and Engineering

Hendrik Tolman Director, EMC

Hendrik.Tolman@NOAA.gov



### **Overview**

This will be short, much in other presentations

Base effort:

- NEMS: software architecture
- Unification: suite architecture

#### Bigger picture:

- NITE
- Validation and Verification





## **NGGPS and NEMS / ESMF**



Modular modeling, using ESMF to modularize elements in fully coupled unified global model ( + ionosphere, ecosystems, .....)





# **NGGPS** physics



Version 1.0 delivered June 2015





# **NEMS / progress**

#### **Deliveries by Cecilia**

- Training at EMC
- Starting to run models / debug

Issues:

- How to get off dual development paths
- Revisit path of NEMS development





## **Basic issues / UMAC**

### Some key findings of UMAC\* :

- Simplify / unify model suite.
- Lack of requirements process.
- Better process to identify development paths.
  - "end-to-end" management of implementations.
- Evidence driven decision.
  - No more predetermined (relative) compute resources for individual applications (our previous "jigsaw puzzle")

The production suite has evolved as a set of solutions for (ill-defined) requirements, instead of a set of products serving well defined requirements.

\* UCACN Model Advisory Committee

https://www.earthsystemcog.org/projects/umac\_model\_advisory





# **Basic issues / UMAC**

Moving away from implementing solutions:

- Need better NWS requirements process.
- Map requirements to products (not models).
- Target model development to better serve requirements.
- Business case is integral part of decisions:
  - Unified model with concentrated effort, versus
  - models tailored to selected requirements.

#### Additional considerations

- Coupled modeling needs to be considered in this context.
- Focus on predictability and outlook products requires systematic ensemble / reanalysis (retrospective) / reforecast approach.





# **Basic approach : atmosphere**

### Start with weather side:

We are NWS !

Starting with products:

- What forecast time ranges,
- which reasonably imply
  - Run cadences.
  - Update cycles.
- Not so clear:
  - Resolutions.
  - Data Assimilation.
  - Reforecast / reanalysis / retrospectives
  - Need to map requirements to forecast ranges.

| Possible Approach |                       |         |        |  |  |  |
|-------------------|-----------------------|---------|--------|--|--|--|
| Range             | Target                | Cadence | Means  |  |  |  |
| year              | Seasonal              | ?       | 9-15mo |  |  |  |
| month             | S2S                   | 6-24h   | 35-45d |  |  |  |
| week              | Actionable<br>weather | 6h      | 3-16d  |  |  |  |
| day               | Convection resolving  | 1h      | 18-36h |  |  |  |
| hour              | Warn On<br>Forecast * | 5-15 '  | 3-6h   |  |  |  |
| now               | Analyses **           | ?       | now    |  |  |  |

\* FACETs

\*\* Separating from DA for models

NCEP

NGGPS meeting



# **Basic approach : coupling**

#### This is not just a science problem

- Requirements for additional, traditionally downstream products.
- "One-way" model coupling versus downstream model:
  - Increases forcing resolution of downstream models while reducing I/O needed to force models.
  - Creates a better integrated test environment for holistic evaluation of model upgrades.
  - Less implementations.
  - Creates environment for investigating benefits of two-way coupling. Enables two-way coupling if science proves benefit.

### Negative aspects of coupling:

- More complex implementations.
- Less flexibility to tailor products.
- Produce "too much" compared to tailored products (forecast range).





# **Basic approach : coupling**

Many potentially coupled model components already have products in the production suite :

- Where no products exists, science suggests benefit of coupling.
- For the hourly forecast range, all still TBD.
- DA is also moving (internationally) to coupling.
- Space weather making its way into operations.
- Ecosystems (marine) being considered (not in table).

| Subsystem     | Year | Month | Week | Day | Hour |
|---------------|------|-------|------|-----|------|
| Land / hydro  | Y    | Y     | Y    | S   | ?    |
| Ocean / coast | Y    | Y     | Y    | S/R | ?    |
| Ice           | Y    | Y     | S    | ?   | ?    |
| Waves         | S    | Y     | Y    | Y   | ?    |
| Aerosols      | S    | S     | Y    | Y   | ?    |
| Space weather | ?    | ?     | Y    | ?   | ?    |





## **Basic approach : DA**

DA is critical ! Unifying on GSI and ensemble hybrid 4DVAR.

Global focus:

- Is a single DA system for all global models feasible?
  - Freeze or update DA for climate applications.
- Where do we go with coupling.

Regional focus:

- We do want to unify, but how feasible is this?
- Great progress with convection resolving, but
- not yet at the science level achieved at global scales.
  - Ensemble based convection resolving DA ....
  - ➤ WoF, many efforts, no real link to production suite yet.





### Unification, the atmosphere

| Range             | Year                | Month                      | Week                                          | Day                          | Hour                | Now                     |
|-------------------|---------------------|----------------------------|-----------------------------------------------|------------------------------|---------------------|-------------------------|
| Target            | Seasonal<br>outlook | S2S outlook                | Actionable<br>weather                         | Convection resolving         | Warn On<br>Forecast | Analyses /<br>nowcast   |
| Present<br>models | CFS                 | CFS<br>(GEFS<br>extension) | GFS, GEFS,<br>NAM, SREF,<br>RAP,<br>hurricane | HRRR,<br>NAM nest,<br>HiresW |                     | RTMA,<br>URMA,<br>blend |
| Cadence           | ? (is 6h)           | 24h (is 6h)                | 6h                                            | 1h                           | 5-15'               | ?                       |
| Range             | 9-15mo<br>global    | 35-45d<br>global           | 3-16d<br>global (?)                           | 18-36h<br>regional (?)       | 3-6h ?<br>regional  | 0<br>regional (?)       |
| Updates           | 4y                  | 2у                         | 1y                                            | 1y                           | 1y                  | 6 mo                    |
| Reanal.           | 1979-now            | 20-25y                     | Зу                                            | ?                            | ?                   |                         |
| Where             | ?                   | WCOSS                      | WCOSS                                         | WCOSS                        | ?                   | WCOSS                   |

- Ensemble based DA for all ranges (day and hour TBD), except possibly for the now range.
- All global applications from single unified modeling system.
- Global / regional unification ?

- Present NPS elements not fitting well in this layout:
  - Space weather (WAM-IPE / Geospace).
  - Hurricane models (GFDL / HWRF).



12/16



## **Unified Global Model**







## **Unified Mesoscale ?**

Not quite part of NGGPS yet, but:

EMS / ESRL / NSSL discussion on going forward with mesoscale models:

Discussion not yet mature but,

 Need to do mesoscale core comparison, as soon as the NGGPS global dycore has been selected





### Other

#### NITE: create common run time environment:

- Design by DTC
- Work on development starting at EMC

### Validation and verification:

- Key to have community package for efficient community modeling and R2O.
- Focus on MET.









